Requiem for Warhol

Once, in a Warhol team brainstorming meeting, I had a pretty good idea.

Warhol was the team responsible for the YouTube video editor, which was sometimes described as “iMovie in the cloud.” You could assemble new videos out of pieces of old ones, apply various special effects, add titles and transitions and so on, all in your web browser. It was pretty sweet.

There were some basic features we knew we needed to add to the editor. “Undo,” for example. Fast “scrubbing” through clips, and easy clip splitting and merging. Audio “ducking” and “pre-lap” and “post-lap.”

But in this meeting we were brainstorming ideas that could distinguish us from tools like iMovie, rather than merely achieve parity with them. What’s something that a YouTube-based video editor could do better than others?

To me the answer was clear: it could use YouTube’s unfathomably vast collection of videos as a stock-footage library, allowing users to create mashups from among billions of source clips.

There was one problem: nearly all those billions of videos had been uploaded under the terms of the standard YouTube license, which prohibited third parties from using videos in novel ways (ways that the original uploader might not approve of, after all). True, there was an option to upload your video under a Creative Commons license that did allow reuse by others. In fact I had personally worked on adding that option. But that option was not well-known, and hadn’t existed for long, and it required uploaders proactively to choose it, so only a tiny fraction of the videos on YouTube were licensed that way. The overwhelming majority were legally unavailable to would-be masher-uppers.

My idea for fixing this was called “reactive licensing.” You could create a video in the editor using whatever clips you wanted, pulled from all over YouTube no matter how they were licensed, but you couldn’t publish your video until getting approval from the clips’ owners. You’d click a “request approval” button and we’d send a message asking those owners to review your video project. They could respond with “Approve,” “Reject,” “Ignore,” “Block,” etc. If you got all the needed approvals, your edited video would become publicly playable.

Reactive Licensing generated some excitement. Here was something that YouTube, and only YouTube, was perfectly suited for. I whipped together a working prototype and we were just about to staff the project when the Legal department quashed it. Turns out a prospective use of someone’s video in a mashup—even one visible to no one but the creator and the owner—still violates the terms of service.1

Some time much later, Legal pushed through a change to the standard YouTube license (for unrelated reasons), and now Reactive Licensing became feasible! A couple of us on the Warhol team got excited again, and I started gearing up a development effort. But things had changed since I’d first conceived of Reactive Licensing. For one thing, both management chains—engineering and product—had been entirely replaced, from my boss all the way up to and including the CEO of Google. There were a couple of departmental reorgs thrown in to boot. For another, Google had become fixated on mobile computing, determined not to miss the boat on that trend as it felt it had with social networking. Everything that wasn’t a mobile app or couldn’t be turned into one became a red-headed stepchild, and the video editor was fatally desktop-bound. Finally, the creator and chief evangelist of the Warhol project had left to go work at Facebook. With his leadership, YouTube had harbored an institutional belief in the importance of balancing video-watching features with features for video creators and curators. Now, despite my efforts to keep it alive, that belief seemed to have departed along with him and the other managers who had supported it. The priorities that came down to the Warhol team now amounted to building toy apps that barely qualified as video-creation tools, such as the Vine workalike, or the thing for adding fun “stickers” to a video. (“Wow!”)

By that point my days at YouTube were numbered. This stuff simply wasn’t interesting—not to me, nor (I was sure) to our users. There were many interesting things we could have been doing, and that we knew our users wanted, but my strenuous efforts to make any of those happen were all denied.

My days at YouTube had seemed numbered once before, years earlier, after a frankly undistinguished tenure on two other teams that held little interest for me.

Back in those days, it was Google’s policy not to hire engineers for any specific role, but to hire “generalists” whom they felt could learn whatever they needed to know for wherever Google most needed them. I knew this when they hired me, but I still expected they’d put me on their new Android team (because I’d just finished 5+ years at Andy Rubin’s previous smartphone startup, Danger) or on their Gmail team (because I’d spent most of the preceding two decades as an e-mail technologist). I was surprised and a little disappointed when they put me at YouTube instead. I had no particular interest in or knowledge of streaming video. But more than that: YouTube was and is designed to keep you in a passive, semi-addicted state of couch potatohood, for which I was philosophically misaligned. I wanted to produce tools people could use. I wanted to empower the little guy and disintermediate the gatekeepers. Working on e-mail all those years, I’d been able to tell myself I was improving the world by making it easier for people to communicate with each other. Helping YouTube reach a milestone like a billion hours of watched video per day failed to move me.

On the other hand, Google was the Cadillac of software engineering jobs, and in those days it was still doing pretty well at living up to its “don’t be evil” motto. That, and the proximity of the YouTube office—half an hour closer to home than the main Google campus—was enough to energize me for a while… but only for a while.

If I hadn’t learned of the Warhol project, or if I’d been unable to transfer onto that team, my time at Google would have been over after two mostly forgettable years instead of seven mostly exciting ones. I hadn’t dreamed it was possible to build a working video editor in a web browser, but once I knew it was, I was hooked on the idea of delivering an ever more powerful creative tool to aspiring moviemakers who lacked the fancy computers and software they would otherwise need. To me it was the early days of desktop publishing all over again, but for video. Here at last was a niche at YouTube that wasn’t about driving increased “watch time.” It was about nurturing artistic expression.

We had big plans. We had working prototypes of a variety of special effects. We would build “wizards” that could make suggestions about shot sequences and pacing. We would give guidance on composition and color. We would commission educational materials from professional filmmakers. It would be “film school in a box.”

But even at its height, the Warhol project never quite got the resources or the marketing it needed, and certainly not enough executive leadership. Only seldom did we get to add one of the essential missing features we needed (like “undo”), to say nothing of the ones on our blue-sky wishlist. The rest of the time we were diverted onto other corporate priorities, such as specialized video-editing support for the short-lived Life In a Day tie-in, or addressing some complex copyright issue, or fixing bugs and performance problems.

Still, the YouTube video editor was well-loved and well-used by a small, dedicated group of users in the know. I myself relied on it while my kids were growing up for sharing well-edited videos of them to the families back east. But given its declining importance to YouTube’s management, it was just a matter of time before they killed it, like so many other beloved but neglected projects at Google. And now that inevitable day has come: the YouTube video editor will be discontinued on September 20th.

  1. For you copyright nerds: This was due to “synchronization rights,” an aspect of copyright that prohibited us from combining two videos in a way that could be construed as synchronizing one to the other. The design of the Warhol service was such that the edited video was created on our servers, and the result streamed to the user’s computer. If we could have arranged for the actual edits to happen on the user’s computer—ironically, the way iMovie works—we would have sidestepped the sync-rights issue. While not impossible, that would have been a cumbersome experience that defeated the purpose of a cloud-based video editor.

    Sync rights doomed another feature I’d hoped to create. I was at a school play at my kids’ elementary school when I realized that nearly all the parents were shooting the same video. Several of them would later upload their videos to YouTube. If it weren’t for sync rights, YouTube could identify clusters of videos all recording the same event (using Content ID, the same audiovisual matching system used for detecting illicit uploads of copyrighted material), arrange them on a common timeline, and present them as different “camera angles” in a video-editing project, allowing everyone to stitch together their own best-possible movie from them. []

IT don’t come easy

Currently in the news, as I write this: the personal data of nearly all American voters was accidentally leaked by Deep Root Analytics, a conservative marketing firm employed by the Republican party, specializing in targeting political ads.

It is only the latest (and largest) in a seemingly endless stream of stories about accidental leaks of sensitive data online.

It isn’t that computer security is hard – at least, not compared with other kinds of engineering challenges, such as building a bridge that won’t fall down. Paradoxically, the problem is that programming is so easy.

Never mind that programmers often get called “wizard” and “genius” – that’s only occasionally true. The fact is that most programming is dead easy. Indeed the ease of creating working software is the very reason for the technology revolution we’ve been living through these past few decades. Remember when HTML was new and suddenly everyone and their dog had a web page because it was so easy? Programming is like that, but for making machines do useful work.

Not all programming is easy of course. Some of it is quite tricky – like computer security. But because so much of the rest of programming is so easy, most software engineers never develop the habits of rigor and precision that in other fields are simply the price of admission. The result: incompletely tested code full of exploits, best practices not followed and oftentimes not even known about, and your personal data and mine secured by the digital equivalent of Barney Fife.

Behind the magic of the blockchain

This entry is part 2 of 2 in the series The magic of the blockchain

[Cross-posted at blog.chain.com.]

This is part two in a series. In part one, we learned that the big idea behind blockchains is this:

I don’t give you digital data as payment. I give the rest of the world a signed statement saying I paid you.

In this article we’ll take a closer look at just how this is done. That is, we’ll look at how:

  • I give the rest of the world
  • A signed statement
  • Saying I paid you

Let’s take these one at a time, in reverse order.

Step 3: …Saying I paid you

Suppose I want to pay you ten dollars on a blockchain. To “say” that I paid you, I have to construct a message called a transaction that combines information about what I’m paying with where I’m sending it.

what “ten dollars”
where “to you”

The ten dollars is called the input to the transaction. Where it’s going is called the output. Ultimately this message will be incorporated into a blockchain, which we learned last time is a ledger – a record of transactions – that is immutable, distributed, and cryptographically secure. More about this below.

Of course I have to have ten dollars before I can pay it to you. It has to come from somewhere. So the input needs to be some earlier transaction saying that someone paid me ten dollars.1 This means each transaction has to have some sort of unique name, or number, or other identifier, so later transactions can refer back to earlier ones.

transaction-id “unique identifier for this transaction”
input “unique identifier for some earlier ten-dollar transaction”
output “you”

What if the only earlier transaction I have is one where I received twelve dollars? Since I only want to send you ten, and since I have to use up all of the earlier transaction (for reasons that will become clear), my new transaction must send you your ten dollars and must also send me two dollars as change. This means that a transaction must be able to have multiple outputs.

transaction-id “unique identifier for this transaction”
input “unique identifier for some earlier $12 transaction”
output1 “$10 to you”
output2 “$2 to me”

Now that we’ve decided transactions can have multiple outputs, it’s necessary to say which output of an earlier transaction you’re using as the input.

transaction-id “unique identifier for this transaction”
input “unique identifier for output1 of some earlier $12 transaction”
output1 “$10 to you”
output2 “$2 to me”

And what if I don’t have a single $10 or $12 transaction to draw on, but I do have a $5 one and a $7 one? Let’s let transactions have multiple inputs as well as multiple outputs.

transaction-id “unique identifier for this transaction”
input1 “unique identifier for output1 of some earlier $5 transaction”
input2 “unique identifier for output1 of some earlier $7 transaction”
output1 “$10 to you”
output2 “$2 to me”

Let’s now focus on those unique transaction identifiers. How should they be chosen so that:

  • Distinct transactions have distinct identifiers, and
  • Anyone in the world can construct his or her own transaction, and
  • No one needs to coordinate with anyone else, or with any central authority, in order to construct a transaction?

The main problem is to prevent “collisions” – two different transactions having the same identifier. If you and I both construct a transaction at the same time, on opposite sides of the world, and don’t coordinate with each other or anyone else, what’s to stop us from accidentally choosing MYCOOLTRANSACTION17 as the identifier for both transactions?

Blockchains solve this problem using a technique called hashing. This is a process that transforms a message of any length, such as the transactions we’re constructing, into a single number of a predetermined size, called a hash. There are several different recipes for computing the hash of a message; they have names like MD5 and SHA1. But good hashing recipes all have the same goals:

  • Given a message, it must be easy to compute the hash (well, easy for a computer);
  • Given only the hash, it must be close to impossible to come up with a message that produces it (even for a computer!);
  • Two identical messages always produce the same hash;
  • Even a tiny difference between two messages must produce wildly different hashes.

The ease of going from message to hash, and the difficulty of going from hash to message, makes this a so-called one-way function, an idea that will be important a little later on.

Now, when squashing a long message down to a number of a predetermined size, it’s unavoidable that different messages will collide – i.e., produce the same hash. But if the predetermined size is big enough – 32 bytes, say – and if the recipe is very good at scattering hashes evenly throughout all 232×8 possible values (that’s 100 quadrillion-quadrillion-quadrillion-quadrillion-quadrillion, give or take a few quadrillion-quadrillion-quadrillion-quadrillion-quadrillions), then the odds of a collision are so low as to be effectively impossible.2

So when you and I construct our transactions, we don’t choose identifiers at all. Instead, we compute identifiers that are nothing more or less than a hash of each transaction’s contents.

input1
  • transaction hash of some earlier $5 transaction
  • output1
input2
  • transaction hash of some earlier $7 transaction
  • output1
output1 $10 to you
output2 $2 to me

When you are deciding whether to accept this transaction as payment for something, you can consult the complete history of transactions on the blockchain to make sure that the inputs of this transaction really do exist, and that they haven’t already been spent in some other transaction. Later on, when you want to spend this money you’re now receiving, someone else will look at this transaction to make sure you own it.

Using a transaction’s hash as its unique identifier also explains why one must consume all of a transaction’s output at the same time (as when, in an earlier example above, I had to consume a $12 transaction output and return $2 to myself as change). If I could consume only part of an old transaction, that would alter the amount available from that old transaction. Altering the transaction would change its hash, which cannot be allowed if hashes are permanent, unchanging unique identifiers for transactions. Once published on a blockchain, a transaction can never change, it can only be referenced by newer transactions.

Step 2: …A signed statement…

Remember that this transaction, like all others on a blockchain, is a message that’s going to everyone in the world. My earlier $5 and $7 transactions, the source of the funds I’m paying to you, are sitting out there on the blockchain for everyone to see, like all unspent transaction outputs, just waiting to be used. What prevents someone else from using them in a payment of their own?

This is where the “to you” and “to me” part of the transaction outputs come into play. I need to be able to write “to you” in such a way that no one but you can construct a new transaction claiming that $10.

This is done using so-called public-private keypairs. You choose a very (very, very) large random number and keep it secret. This is your “private key.” This number can be transformed with some fancy arithmetic into another number, the “public key,” that you publish for everyone to see. The fancy arithmetic is a one-way function akin to hashing, so no one with only your public key can figure out your private key.

Public-private keypairs have some amazing superpowers. One of them is that you can digitally sign a message so that everyone in the world can be sure it’s you signing it. You do this by combining your private key in a particular way with the message you’re signing (or, more typically, a hash of the message you’re signing). The resulting “signature” has some special properties:

  • It was created using another one-way function, so no one looking at just the signature can discover either your private key or the message you’ve signed;
  • There remains a mathematical relationship between the signature and your public key, so if someone has that and the message you signed, they can verify that the signature is genuine. Even without knowing your private key, they can be sure the signature was made from it, and from that particular message and no other. (So no one can take your valid signature from one transaction and stick it on another one in the hope that it’ll be valid there – it won’t.)

So to make sure that only you can access the $10 I’m paying you, I secure the output of my transaction by attaching your public key. I also secure the $2 in change that I’m paying to myself by attaching my public key.

input1
  • transaction hash of some earlier $5 transaction
  • output1
input2
  • transaction hash of some earlier $7 transaction
  • output1
output1
  • $10
  • to your public key
output2
  • $2
  • to my public key

In order to redeem one transaction’s output for use as the input to another transaction, the payee supplies a digital signature made from the new transaction’s hash and his or her private key. My transaction paying you $10 redeems $5 and $7 from two earlier transactions, which were paid to my public key, so I redeem them like so:

input1
  • transaction hash of some earlier $5 transaction
  • output1
  • signature made from this transaction’s hash and my private key
input2
  • transaction hash of some earlier $7 transaction
  • output1
  • signature made from this transaction’s hash and my private key
output1
  • $10
  • to your public key
output2
  • $2
  • to my public key

Anyone can look at this transaction and verify that my signature on the inputs matches the public key attached to the earlier transactions’ outputs. As long as I’ve kept my private key secret, no one else can produce a valid signature that matches both this transaction and my public key.

The balance of money that I own on the blockchain is simply the sum of all unspent transaction outputs that have my public key attached.

Step 1: I give the rest of the world…

These transactions must be distributed to be useful, meaning that everyone in the world has, or can get, the data they need to validate transactions.3 If I create a transaction sending you $10, in principle you’ll need the entire history of earlier transactions leading up to that one in order to validate it (i.e., to believe that you’re really receiving $10), including all the unrelated transactions in the system to ensure I haven’t spent that same $10 somewhere else. When you want to spend the $10 I send you, your payee will need the same thing.4

It’s easy to imagine a system in which each new transaction is broadcast to all blockchain participants that are somehow subscribed to new-transaction notices. But the reality of network delays means that different subscribers will receive these notices in different orders. (Transactions that originate closer on the network will arrive sooner, in general, than transactions that need more “hops” to get to you.) The system only works if everyone has a consistent view of the transaction history: if I see A, then B, and you see B, then A, we might disagree about the validity of C, and a distributed ledger (or any ledger, really) can’t work if there’s disagreement about a transaction’s validity. Here’s why: if I were dishonest,5 I might try to exploit network delays to spend the same $10 twice, to two different people, each of whom might believe (thanks to differences in ordering) that theirs is the valid $10 and the other is the invalid double-spend. No one would be willing to accept either person’s (purported) $10 as payment for anything, and confidence in the whole scheme goes out the window.

What’s needed is some authority that everyone can trust to put a stamp on the official correct ordering of transactions; and once the order is set, to publish the sequence for all to see. The published sequence could, in principle, consist of a list of individual, timestamped transactions, digitally signed by the timestamping authority; but if there are more than just a few transactions each second, the processing and communication overhead of this approach is prohibitive. For efficiency, it’s better to group transactions into blocks, certifying and publishing a block containing many transactions every so often, with each block linked to the block before it (by including the earlier block’s unchangeable hash, in the same way transactions refer to other transactions by their hashes) in an ever-lengthening blockchain.

Whom to trust for generating blocks in the chain? That depends on how a particular blockchain is going to be used. If it’s for managing an anti-authoritarian global cryptocurrency, the answer is “no one.” If it’s for managing the loyalty-reward points of a national coffee-shop chain, the answer is probably the corporate parent of the coffee shops. Other use cases require in-between levels of trust.

There are techniques for concentrating trust or spreading it around to match different use cases. The just-trust-headquarters case is easy, of course: everyone sends their proposed transactions there, and listens for the blocks that occasionally emerge, confirming their transactions. The trust-no-one case has everyone broadcasting their proposed transactions to as many others as they can, and everyone racing to collect them up and be the one that produces the next valid block in exchange for some small reward (a process called “mining,” designed so no one person or group can control the contents of the blockchain). The in-between case of trusting a group of independent authorities can require that, if one of that group proposes a block, all or a majority of the others must endorse it by adding their digital signatures.

In most cases, the simple existence of a transaction in a block of the blockchain is the transfer of money: final and authoritative, with no further steps required before the recipient can spend what they’ve just received – by adding a transaction of their own.

Sounds great but

Transferring money (or other kinds of value) on a blockchain is as fast and easy as handing someone cash – easier, since you don’t have to be in the same place to do it.

But cash isn’t the right answer for every type of transaction. Sometimes you need a delay, and sometimes you need to cancel or reclaim your payment. And what about this everyone-can-see-every-transaction business? Do you really want to give everyone in the world the ability to look at your whole purchase history?6

There are ways to preserve privacy on a blockchain, as well as ways to delay payment until a certain time elapses or other conditions are met, and even ways to eliminate “counterparty risk” (the risk that you pay for something and then don’t get what you paid for), but I’ve gone on long enough for now and discussion of those will have to wait until part three.

[My thanks to my Chain colleagues Adam Ludwin, Nadia Ali, and Zarya Faraj for their input on early drafts of this article.]
  1. And that transaction had to have a source too, and so on, and so on. Where do the dollars on a blockchain ultimately come from? It’s a good question with a complicated answer that we won’t get to in this article. The short version is that participants can “buy in” to a blockchain in the same way one converts dollars to chips in order to play at a casino (among other options). []
  2. Many newcomers to hashing worry about the difference between “effectively impossible” and “actually impossible” and waste a lot of energy in a vain attempt to eliminate even the tiny remaining possibility of a hash collision. But that’s only because our ape brains are bad at understanding really, really, really tiny possibilities. When it’s likelier that your blockchain system will be disrupted by simultaneous drunken-rhinoceros stampedes at multiple datacenters than by even one hash collision, your efforts are better directed elsewhere (like putting up rhino fencing). []
  3. Who is “everyone in the world”? It would be more accurate to say “everyone participating in a particular blockchain.” A blockchain managing consumer dollars, as in the examples in this article, would necessarily be global, and “everyone in the world” would literally mean everyone in the world. Other blockchains managing other kinds of asset might confine participants to particular companies’ customers, or particular traders, investors, or institutions. []
  4. If you’re thinking that’s a tremendous data requirement, you’re not wrong. In a future article we’ll discuss clever ways to mitigate this and even make it fast. []
  5. I’m not. But if I were, that’s just what I would say. []
  6. Millennials: this is a rhetorical question. The answer is “no.” []

The magic of the blockchain

This entry is part 1 of 2 in the series The magic of the blockchain

[Cross-posted at blog.chain.com.]

You may have heard that the world of finance is getting excited about the potential of the blockchain (Economist, Financial Times, Forbes) and wondered:

What is the blockchain? What problem does it solve?

The blockchain is the technology behind the digital currency Bitcoin, but it has wider applicability. It is a collection of mathematical, recordkeeping, and communication procedures that makes it possible to trade digital assets securely.

Why is that a big deal?

Think of how useful it has been to digitize all kinds of information over the past generation or two.1 Digital information can be transmitted from place to place at lightning speed (literally), stored indefinitely, duplicated endlessly, and analyzed, processed, and transformed automatically, all without any loss of fidelity. This was all flatly impossible until quite recently. When it became possible, it didn’t just make things faster and more efficient. It enabled the creation of entirely new ways to produce and consume information that never existed before, and new industries built on top of them. Think Twitter, YouTube, Uber.

But money hasn’t been digitized – and has therefore been left out of all the dramatic innovation that has happened elsewhere in the economy – because digital information can be duplicated endlessly, which is at odds with the key feature of money: namely, that once you trade it away, you no longer have it. Think about it: without that feature, money would be useless.

If you have something valuable to sell, and I want to pay you with some digital data that I call “money,” what’s to stop me from keeping a copy of that data and then spending it again with someone else?

The blockchain, that’s what.

That’s impossible

You may now be thinking, “There’s no way to prevent the copying of digital data,” and you’d be right. Even so-called copy-protected data, such as a movie on DVD, doesn’t work on the principle of actually preventing copying. (It works by scrambling the data and refusing to descramble it unless the playback conditions are kosher. You can copy the scrambled data as many times as you like.)

And yet the blockchain does manage to prevent “double-spending.” You might now expect to hear an explanation of how it does so in terms of prime numbers, one-way functions, asymmetric encryption, and other arcana. But those are merely the implementation details, which we’ll save for another article. The main idea is this:

I don’t give you digital data as payment. I give the rest of the world a signed statement saying I paid you.

This is a fundamental and surprising insight into the nature of money: the token of exchange doesn’t matter as much as that everyone agrees an exchange took place. When everyone agrees on that, then I can’t double-spend that token, even if I’ve made a copy of it, because whoever I try to spend it with will know that token is no longer mine to spend. And they’ll know that you can spend it… and you’ll know that they know it.

The money at the bottom of the sea

Here it’s worth taking a little digression into the story of the Yapese and their Rai stones.

The Yapese live on Yap, an island in Micronesia in the South Pacific. You may have heard of the giant stone discs that they use as a traditional form of money. Hewn out of limestone rocks on Palau, some 200 miles away, and standing on edge, they tower over their owners, who sometimes have to stand on tiptoe just to peer through the holes drilled in their centers.

These coins weigh thousands of pounds each. They can’t be kept in a coin purse or even stored indoors, so they are propped up for display in public places. When it is time to spend one, the coin never moves – that would be too difficult, and might damage the coin (or the mover!). Instead, news of the transfer filters out to the Yapese, who maintain an oral history of the ownership of each coin. This shared “ledger” of trades ensures that only the current owner of a coin can spend it, no matter where it’s physically situated.

In fact, a rai stone being transported from Palau to Yap by outrigger canoe once famously sank to the bottom of the sea in a storm. When the sailors got home without their cargo, the Yapese did not doubt the fact of its existence, and since its location didn’t matter, they proceeded to trade it just like their other giant coins.

Imagine that an earthquake strikes the island of Yap. No one is hurt, fortunately, but all the stone discs are dislodged and they all roll downhill into the sea. No problem – the rai economy could still continue! Now imagine that, instead of an earthquake, collective amnesia strikes the Yapese. No one can remember who owns what! In that case the rai economy is destroyed and actual economic value is irretrievably lost. This illustrates that, in a very real sense, the record of trades is the money.

That kinda makes sense

Right?

Think about depositing money in the bank. You go to the bank and hand the teller some cash. Does the teller put the cash in a box with your name on it? No. Some of it goes into a vault, mixed with everyone else’s money. Some of it is put to work in the form of loans. In what sense is your money still in the bank? In the sense that the bank maintains a record of what it owes you if you ever come asking for it.

(To keep the bank honest, you also maintain your own records – deposit receipts, a checkbook register, etc. Occasionally your records and the bank’s may disagree. We’ll come back to this idea.)

Don’t we already have secure digital asset trading?

In a word, no.

The problem is that there are multiple recordkeeping systems that have to be reconciled with one another. When you swipe your debit card at a gas station (say), you initiate a series of steps in which you, your bank, the gas station, the gas station’s bank, and the card-processing network all have to make updates to their records. For efficiency, those updates are usually batched together with others, and they happen at different times for different participants in this transaction. The updates get transmitted between and among the participants, and those transmissions produce acknowledgements that also get transmitted. Each party has to incorporate the others’ details into its own recordkeeping, and if everything doesn’t agree, there may need to be some sort of dispute-resolution step, unless the cumulative error is small enough that it’s not worth it and someone just eats the loss.

All of this transaction clearing and settlement is comparatively slow and expensive and happens long after you drive away from the pump. The gas station has some “counterparty risk”: it has let you have its gasoline without being sure that it will get your money. (But that risk is small compared to the value of letting customers pay this way, which is why the gas station accepts it.)

This is all because no one involved – not you, not the banks, not the gas station or the card network – can be quite sure at any given moment where the money is,2 only that if they follow these procedures, it usually ends up in the right place. Each entity therefore does its own recordkeeping as a check and balance on the others – just the same way that you keep all your deposit receipts (you do, don’t you?) in case your bank ever shows the wrong balance on your account.

How does the blockchain help?

The blockchain is a ledger that is immutable, distributed, and cryptographically secure.

  • Ledger means that it’s a historical record of trades;
  • Immutable means that once a trade is added to the ledger, it is permanent and unchangeable;
  • Distributed means that everyone gets a copy of it (and keeps getting updates as they happen); and
  • Cryptographically secure means that that everyone can trust what’s in it.

If the parties in the gas-station example were all on the blockchain, what would be the steps by which the gas station gets paid?

  1. You add a transaction to the blockchain stating that some funds that you control (because in an earlier transaction, someone else transferred them to you) now belong to the gas station.

That’s all! When you commit to the idea that the record of trades is the money, there is no separate clearing or settlement step needed. The trade is its own settlement. As soon as you add that transaction to the blockchain, you lose control over those funds and the gas station gets control over them. The gas station can now add its own transaction to the blockchain transferring those funds to someone else – and you can’t.3

Would you like to know more?

In the original Bitcoin blockchain, there is one type of asset – bitcoin – and a predefined way in which new bitcoins can be “minted.” It is possible to generalize the idea of the blockchain, however, so that it can encompass many different kinds of asset (dollars, airline miles, corporate securities, loyalty reward points) with differing rules for issuing units of those assets onto the network. The next article in this series will take a closer look at the mechanisms behind the blockchain (including explaining why it’s called a “blockchain”) and describe some reasons and ways to alter the Bitcoin blockchain to make it suitable for other uses.

  1. I like to think of that scene in All The President’s Men when Woodward and Bernstein have to thumb through thousands of Library of Congress call slips one by one by one, hour after hour after hour. Today a few tap-tap-taps at a computer terminal are all that’s needed. []
  2. To say nothing of what the money is – which, as we’ve seen, is the record of who has paid what to whom. In this example (and in the economy at large) that record is a kaleidoscopic agglomeration of many differing and overlapping records, some of which lag behind others, some of which will never agree. It’s no wonder people are confused about money. []
  3. Of course it isn’t quite that simple. To achieve the cryptographic security that allows everyone to trust the contents of the blockchain, it takes a little time for the transaction to propagate across the network and for other participants on the network to certify it. []

Remembering the past no guarantee of not repeating it

In February of 1992, Apple Computer flew me from Pittsburgh to California and put me up at the Cupertino Inn for a series of job interviews over a couple of days. I extended my stay in order to visit a few other companies too.

One of the companies on my list was a tiny e-mail startup in San Rafael called Z-Code. I was planning to visit them in the afternoon after spending the morning at a prominent computer magazine, interviewing for an editorial position. That visit went very well, and so had the interviews at Apple; and having driven from Cupertino to San Francisco for that interview, I now had a sense for how long the return drive would be, and how much farther out of the way a visit to Z-Code would take me.

If I hadn’t been such a Star Wars nerd I might have skipped it altogether. But I knew that Skywalker Ranch and Industrial Light and Magic were in San Rafael somewhere and I harbored a secret hope of spotting them as I navigated to my Z-Code visit. I visited Z-Code and, to my surprise, found that opportunity more compelling than the ones at Apple and at the magazine. Two months later I was living in California and working at Z-Code and the rest is history.

Now, almost a quarter century later, I’ve had a very similar experience. I interviewed successfully at a number of well-known medium-to-large-sized companies over the past several weeks but found a tiny startup – that I had almost dismissed, at first, as not worth my time – to be the most compelling. Tomorrow I begin at Chain.com.

Kill Ralphie! saved!

[Cross-posted at kill-ralphie.blogspot.com/2015/06/kill-ralphie-saved.html.]

In the 1980’s, students and faculty at Carnegie Mellon University were on the Internet, but there was no World Wide Web yet – no browsers, no websites, no Google, Facebook, or YouTube; in fact, no video and almost no graphics, just text. But there still existed social communities online, organized into discussion forums on numerous topics. Usenet was the biggest of these. Carnegie Mellon had its own internal collection of discussion forums called bboards.

One bboard was called “Kill Ralphie!” When someone posted to Kill Ralphie, they were contributing a chapter to an ongoing story about a hapless lad who is alternately placed in immediate mortal danger, then rescued, both in the most creative and entertaining ways possible. I was an enthusiastic participant back then, along with many others at CMU. Writing for an audience of fellow contributors was a formative experience for me that improved my prose and humor skills from “immature” to “slightly less immature.”

Well, guess what? Kill Ralphie! lives again! I’ve taken that old pastime and turned it into a fun new website. Please check it out, contribute chapters, and enjoy: kill-ralphie.com.

When you click a YouTube link

Earlier today I gave a presentation about YouTube to seventh graders for “career day” at Jonah’s middle school. (Actually I gave it six times in a row to rotating classroomsful of kids, with the result that (a) I’m totally shredded and (b) I have even more respect for what teachers do all day every day.) Coincidentally it’s the tenth anniversary of the first YouTube video.

I thought fifth grade would be my last chance to appear cool to Jonah’s classmates on his behalf (and I’ve now given that presentation to Archer’s class too), but it looks like I have some coolness left after all. He even allowed me to walk to school with him and his neighborhood friends this morning:

Me: OK if I walk to school with you in the morning?
Jonah, shrugging: Sure.
Me: OK. Just wanted to make sure I wasn’t cramping your style or anything.
Jonah: What style?

Maybe YouTube lends me a little extra middle-school cred. Anyway, the presentation was well-received by most of the kids. It involved soliciting sixteen volunteers per class to read different parts aloud in a short little play I wrote. Each volunteer got a copy of the script with his or her part individually highlighted (which I did by hand earlier this week for all ninety-six copies I needed to hand out – eight pages each – and this in the middle of April, because I’m a glutton for punishment). I was a little worried about getting enough volunteers in each class, but I need not have been; the kids were down with whatever the YouTube guy wanted to do. I gave out my bribes anyway: YouTube stickers and pens.

I was the narrator. Everyone in the class who didn’t volunteer for one of the other parts became “All the buttons and menus.” After we performed the scene, the teacher displayed a web page I had prepared containing a YouTube link and we watched – hopefully with a little better understanding now of what was going on behind the scenes – as she clicked it and Dramatic Chipmunk played. It took a split second to perform all the actions we’d just spent eight minutes dramatizing.

We didn’t get to the song I included at the end of the script. I didn’t expect to but included it anyway as a little lagniappe for the kids. I hope some of them are singing it now; I know I am.

After the sixth presentation, I thanked the teacher for hosting me. She complimented me on the scene I had written. “Thanks,” I said, “but after six repetitions the words have lost all meaning.” She replied, “Welcome to the world of teaching.”

We’re not fledgling

THIS ASSET PURCHASE AGREEMENT (this “Agreement”) is made and entered into as of and shall take effect on March 1, 2015 (the “Closing Date”), by and among [company that may not wish to be named quite yet], a California corporation (“Buyer”), ZANSHIN, a California corporation (“Seller”), and Seller’s principal shareholders, BARTON SCHAEFER, STEVE WEBSTER, GREGORY FOX, and ROBERT GLICKSTEIN (collectively the “Majority Shareholders”).

Thus ends, for all intents and purposes, the story of Zanshin, the company that my friends and I started in 1996 after resigning en masse from Z-Code. It will continue to exist in name and in certain administrative functions, but [unnamed company] is buying substantially all its assets and hiring away most of its employees.

Z-Code was the producer of an award-winning cross-platform e-mail client, Z-Mail. In 1994 Z-Code’s owner Dan Heller sold the company to Network Computing Devices (NCD), a hardware company. Much of Z-Code’s staff was baffled by the sale and considered it ill-advised. Indeed there followed a corporate comedy of errors as first Dan was let go and then NCD’s top leaders, Judy Estrin and Bill Carrico, were fired. As we’d predicted, NCD’s sales staff had no idea how to sell software. As the World Wide Web started gaining traction, we were alarmed when NCD’s clueless new CEO, Ed Marinaro, tried to repurpose Z-Code’s staff of e-mail software experts as developers of a new Windows-only web browser called Mariner. Meanwhile, we were denied opportunities to make badly needed improvements to Z-Mail, and finally, after a number of grassroots efforts to turn things around had failed, a bunch of us gave up and quit to start our own e-mail software company.

After considering and rejecting several names we settled on Zanshin, a Japanese word meaning some badass combination of “emotional intensity” and “follow-through.” We discovered it in this passage in Neal Stephenson’s novel Snow Crash, describing a swordfight between avatars in the high-resolution virtual reality called the “Metaverse”:

The businessman reaches across his body with his right hand, grips the handle of his sword just below the guard, draws it out, snaps it forward so it’s pointing at Hiro, then places his left hand on the grip just below the right. […]

The businessman turns out to have a lot of zanshin. Translating this concept into English is like translating “fuckface” into Nipponese, but it might translate into “emotional intensity” in football lingo. He charges directly at Hiro, hollering at the top of his lungs. […]

“Emotional intensity” doesn’t convey the half of it, of course. It is the kind of coarse and disappointing translation that makes the dismembered bodies of samurai warriors spin in their graves. The word “zanshin” is larded down with a lot of other folderol that you have to be Nipponese to understand.

And Hiro thinks, frankly, that most of it is pseudomystical crap, on the same level as his old high school football coach exhorting his men to play at 110 percent.

We incorporated with our own money (proceeds from selling NCD stock) and the help of a fancy Sand Hill Road lawyer. We rented a house in Petaluma where some of us lived and all of us worked on bringing to life our vision of a beautiful and functional e-mail manager built on the theory that, done right, e-mail could serve as the repository for all one’s private information and communications. In hindsight our plan was not sufficiently well-defined, and neither was our project development timeline. More than two years passed of writing code together every day, grappling with the early web and our ever-problematic dialup Internet access, pushing the boundaries of the IMAP e-mail protocol and the fledgling GNU C++ compiler, and taking turns cooking for one another, watching The Simpsons together, and generally not operating with an adequate sense of purpose or urgency. By the time our e-mail client, code-named Lawndart, finally began sparking to life, the entire e-mail landscape had changed beneath our feet. Free clients like Outlook Express and Eudora had become ubiquitous and were good enough for most people, and free web-based mail from Microsoft and Yahoo was starting to take off. Even if we had gotten Lawndart to market, no one would have cared.

The only software we ever released was a Lisp-like text-markup language called Latte (“Language for Transforming Text”) and its followup, Blatte (“Better Language for Transforming Text”), which we open-sourced and gave away as a kind of corporate calling card. Somehow or other this led to Zanshin getting an extended consulting gig with Amazon.com, for which a couple of us ended up traveling back and forth to Seattle a lot. Things I remember from that time:

  • Checking in and out and in and out of the Residence Inn on Lake Union week after week;
  • The offices in which we did our work, and several of the people we worked with;
  • Various meetings and meals;
  • Keeping in touch with my new wife via the late-90’s-vintage phone I carried on a belt clip;
  • Being extra fastidious about tracking my time, reporting my progress, and keeping expenses down

but I’m damned if I can remember the nature of any actual work we did for them. Nevertheless, the gig went so well that Amazon offered to relocate us all to Seattle and hire us. Andrea flew up to Seattle to get the vibe of the place. Together we decided it was definitely doable.

Back in California we had a few long talks about Zanshin’s prospects and how we all felt about packing it in and moving to Seattle. Some of us were in favor, some were opposed and felt that Zanshin had some life left in it. We recognized that our dream of a high-tech e-mail client was dead; but in those long-overdue discussions we started to conceive of some exciting new ideas for the server side of e-mail and, in the end, convinced ourselves to stick it out as a software startup. We turned Amazon down.

We began describing to ourselves, and then to some business consultants, a collection of server-side e-mail features that collectively we called “MSpace.” Zanshin moved out of rented houses and into actual offices, and we took a little extra investment to keep us going (including from the notorious Gary Kremen, owner of the sex.com domain).

One way and another, our plans for MSpace took a detour into the realm of e-mail marketing — spamming, essentially, but ethical spamming as we were always quick to point out, for reputable marketers only, never sharing e-mail lists, and always providing no-hassle opt-out. I wrote a high-performance e-mail delivery engine and the aforementioned Blatte language for creating dynamic customizable templates, and Zanshin, operating its e-mail marketing service under the name iPost, finally started earning money.

This whole time I had been moonlighting as a founding member of the Internet Movie Database. In 1998 Amazon.com bought the IMDb (a coincidence not related to Zanshin’s consulting gig) and early in 2001 they asked me to join full-time. Five years of earning first no salary and later only a token amount had taken its toll, particularly since Andrea and I were planning to start a family; and the e-mail marketing business, though it was taking off, failed to move me. After consulting with my partners we agreed that I’d wrap up work on iPost’s delivery engine and then be done.

However, Andrea had joined Zanshin a couple of years earlier herself and she remained even as I went on to work full-time for the IMDb, and later for other companies. The e-mail marketing business amassed a surprisingly healthy client list and collected enough revenue to pay competitive salaries to a growing staff of developers and salespeople. I returned for a couple of short contract gigs from time to time. But as the years passed, the margins got slimmer and slimmer and the industry consolidated behind a few ever-larger players. Two of the other original founders had also left. New-product ideas always came second to dealing with never-ending customer issues. There was still momentum in the business, but it was unclear for how much longer. The time for a change had come, and I am grateful to Andrea and my Zanshin partners for making it happen.


Postscript. The title of this post comes from an episode at Z-Code. When a magazine, in its review of our product, Z-Mail, called our company a fledgling startup, we bristled, having by then grown quite a bit and able to count companies like Chevron and Silicon Graphics among our business partners. I undertook to make a sign for the office reading, “Z-Code Software: We’re Not Fledgling,” and it became a frequently heard catchphrase.

A little of Andy lives on in me

In 1978, it was rare ever to encounter a computer, much less someone who had one at home. The “personal computer revolution” was only about a year old, with Apple, Commodore, and Radio Shack all introducing their first consumer models in 1977.

Of the people who did have computers at home, surely only a small fraction were so generous with them as to allow their sons’ twelve-year-old friends to spend afterschool hour after hour, day after day, month after month sitting at them, tapping in and trying out dumb little programs; and an even smaller fraction were also seasoned programming experts with the desire, ability, and patience to impart some of that expertise to receptive but very green ears.

This weekend I, one of those twelve-year-old friends in 1978, mourn the passing of Andy Kane, one of those generous and patient computer owners. Andy was one of the many reasons I was lucky to befriend his son Chuck in the seventh grade. He was a living example of the ability to make a career out of writing software and he contributed significantly to nurturing the then-embryonic skills that today support me and my family. My condolences to his; I will always be grateful.

Counting the bits at YouTube

Jonah is nearly done with fifth grade. In the fall he begins middle school. For years I’ve known that if I’m ever going to visit his classroom for a “what my dad does at work” presentation, it would have to be before middle school, which is when the coolness of “what my dad does at work” presentations falls off a cliff.

I made it just under the wire. For a long time all I had were good intentions and a half-started slide deck, work on which always took a backseat to this and that. Finally, a few weeks ago I gave his classroom the presentation below.

It was a hit. YouTube has a lot of cachet with 10-year-olds. It helped that I made some of the presentation interactive; there was a novelty factor to having the class work out some simple but enormous numbers. They stayed engaged for the full forty-five minutes, volunteering answers, laughing in the right places, and asking smart questions.

At the end I distributed light-up YouTube yo-yos to everyone, which was an even bigger hit. Hopefully it cemented Jonah’s reputation as the coolest kid to know. But his classmates were into the talk even before they knew there was swag coming.

I invite you to reuse or repurpose the slides below. I plan to give the talk again in two years when Archer is in fifth grade, so any constructive feedback that I can incorporate before then would be welcome.